Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
Phytother Res ; 36(5): 2109-2115, 2022 May.
Article in English | MEDLINE | ID: covidwho-1858908

ABSTRACT

Respiratory viruses pose a significant threat to global health. They initially infect the naso- and oropharyngeal regions, where they amplify, cause symptoms, and may also be transmitted to new hosts. Preventing initial infection or reducing viral loads upon infection might soothe symptoms, prevent dissemination into the lower airways, or transmission to the next individual. Several natural products have well-described direct antiviral activity or may ameliorate symptoms of respiratory infections. We thus analyzed the potential of plant-derived products to inactivate respiratory viral pathogens and determined the antiviral activity of black chokeberry (Aronia melanocarpae [Michx.] Elliott), elderberry (Sambucus nigra L.), and pomegranate (Punica granatum L.) juice, as well as green tea (Camellia sinensis [L.] Kuntze) on the infectivity of the surrogate-modified vaccinia virus Ankara, and the respiratory viruses severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A virus (IAV), and adenovirus Type 5. Black chokeberry and pomegranate juice, and green tea reduced SARS-CoV-2 and IAV titers by ≥80% or ≥99%. This suggests that oral rinsing with these products may reduce viral loads in the oral cavity which might prevent viral transmission.


Subject(s)
COVID-19 , Orthomyxoviridae , Antiviral Agents/pharmacology , Humans , SARS-CoV-2 , Tea
2.
Metabolites ; 12(4)2022 Mar 25.
Article in English | MEDLINE | ID: covidwho-1810023

ABSTRACT

This study centered on detecting potentially anti-inflammatory active constituents in ethanolic extracts of Chinese Lonicera species by taking an UHPLC-HRMS-based metabolite profiling approach. Extracts from eight different Lonicera species were subjected to both UHPLC-HRMS analysis and to pharmacological testing in three different cellular inflammation-related assays. Compounds exhibiting high correlations in orthogonal projections to latent structures discriminant analysis (OPLS-DA) of pharmacological and MS data served as potentially activity-related candidates. Of these candidates, 65 were tentatively or unambiguously annotated. 7-Hydroxy-5,3',4',5'-tetramethoxyflavone and three bioflavonoids, as well as three C32- and one C34-acetylated polyhydroxy fatty acid, were isolated from Lonicera hypoglauca leaves for the first time, and their structures were fully or partially elucidated. Of the potentially active candidate compounds, 15 were subsequently subjected to pharmacological testing. Their activities could be experimentally verified in part, emphasizing the relevance of Lonicera species as a source of anti-inflammatory active constituents. However, some compounds also impaired the cell viability. Overall, the approach was found useful to narrow down the number of potentially bioactive constituents in the complex extracts investigated. In the future, the application of more refined concepts, such as extract prefractionation combined with bio-chemometrics, may help to further enhance the reliability of candidate selection.

3.
Phytomedicine ; 98: 153970, 2022 Jan 30.
Article in English | MEDLINE | ID: covidwho-1655019

ABSTRACT

BACKGROUND: The COVID-19 pandemic will continue to threaten our health care systems in the next years. In addition to vaccination there is a need for effective tools for prevention and treatment. Products from natural sources, like standardized plant extracts offer a wide range of antiviral effects and possible applications. PURPOSE: The aim of this study was to investigate, whether a sorbitol/lecithin-based throat spray containing concentrated green tea extract (sGTE) interacts with SARS-CoV-2 viral particles and additionally is capable to block the virus replication. STUDY DESIGN AND METHODS: The antiviral effect was studied in a VeroE6 cell culture model, including concentration/effect correlations and the biological mechanism of virus blockade, using the Wuhan type of SARS CoV-2 as well as its beta- and delta-mutations. In addition, the qualitative and quantitative tannin profile present on the oral mucosa after spray application has been investigated by LC-MS/MS and HPLC-DAD analyses of (-)-epigallocatechin-3-O-gallate (EGCG) and related catechin derivatives. RESULTS: The findings of this study demonstrate, that sGTE has strong neutralizing activity on SARS-CoV-2 resulting in an up to 6,3E+04-fold reduction of infectivity independent from the strain. The type of interaction of sGTE with surface proteins seems to be direct and non-specific concerning the viral surface protein structures and resembles the general non-specific activity of polyphenols. By HPLC-DAD analysis, eight catechins were identified in sGTE, with EGCG and (-)-epicatechin-3-O-gallate as the most abundant ones. The total content of catechin derivatives, calculated as catechin, was 76 g/100 g. LC-MS/MS and HPLC-DAD analyses of throat swabs after application of a sGTE spray have shown that the concentrations of green tea tannins in the pharyngeal mucosa are higher than the effective dose found in the in vitro studies with SARS-CoV-2, even 1 h after the last application. CONCLUSION: The findings of this study suggest that sGTE has strong neutralizing activity on SARS-CoV-2 independent from the strain (Wuhan strain, beta- or delta-variants). sGTE might be relevant for reduction of corresponding viral infections when periodically applied to mouth and throat.

4.
Phytother Res ; 35(6): 3013-3031, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-996303

ABSTRACT

In times of health crisis, including the current COVID-19 pandemic, the potential benefit of botanical drugs and supplements emerges as a focus of attention, although controversial efficacy claims are rightly a concern. Phytotherapy has an established role in everyday self-care and health care, but, since botanical preparations contain many chemical constituents rather than single compounds, challenges arise in demonstrating efficacy and safety. However, there is ample traditional, empirical, and clinical evidence that botanicals can offer some protection and alleviation of disease symptoms as well as promoting general well-being. Newly emerging viral infections, specifically COVID-19, represent a unique challenge in their novelty and absence of established antiviral treatment or immunization. We discuss here the roles and limitations of phytotherapy in helping to prevent and address viral infections, especially regarding their effects on immune response. Botanicals with a documented immunomodulatory, immunostimulatory, and antiinflammatory effects include adaptogens, Boswellia spp., Curcuma longa, Echinacea spp., Glycyrrhiza spp., medicinal fungi, Pelargonium sidoides, salicylate-yielding herbs, and Sambucus spp. We further provide a clinical perspective on applications and safety of these herbs in prevention, onset, progression, and convalescence from respiratory viral infections.


Subject(s)
COVID-19 Drug Treatment , Plant Preparations/pharmacology , Plants, Medicinal/chemistry , Dietary Supplements , Humans , Immunity/drug effects , Phytotherapy/methods , SARS-CoV-2/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL